
© 2021 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views expressed in this document, including URL and
other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to any
intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

Azure SQL Jump-Start Guide
Get hands-on experience with Azure SQL to build fully
managed, secure, and intelligent databases

Experience optimized performance, security, and durability
on an intelligent, scalable, and always up-to-date platform.
Use these resources to accelerate application modernization
and development in the cloud.

Get Started
with Azure SQL
Azure SQL provides flexible options for
application modernization, migration,
and development in a consistent,
unified experience across your entire
SQL portfolio. Get up and running with
Azure SQL in minutes with these three
simple steps.

The Azure portal allows you to
create a SQL database and SQL
managed instance simply by
filling out basic details.

Here is an example screenshot taken
from the Create SQL Database form:

Azure Hybrid Benefit is a cost‑saving
benefit that lets you use your
existing on‑premises SQL Server
licenses with active Software
Assurance on Azure. You can save
up to 80% compared to standard
pay‑as‑you‑go rates and achieve the
lowest cost of ownership when you
combine Azure Hybrid Benefit with
Reserved Instances pricing.

While selecting Compute + storage,
you have the option to save money by
choosing Azure Hybrid Benefit.

Once you complete the form, click on the Review + create button to review the details and start the
deployment. It will take few minutes to complete.

After the deployment, the next step is to connect and create database objects. Before connecting,
you must add the client IP address (or the IP address range) to the server or database firewall rules to
enable external connectivity to your database.

Note: You may follow different steps, and the provisioning duration may vary, if you want
to deploy Azure SQL Managed Instance or SQL Server in an Azure VM. The steps and the
provisioning duration provided here are only applicable to Azure SQL Database.

Here is an example of selecting the Save money option when provisioning an Azure SQL database:

Connect to Azure SQL Database and
SQL Managed Instance

Load or migrate data to Azure SQL
Database and SQL Managed Instance

2

3

You can connect to Azure SQL Database and SQL Managed Instance using SQL Server Management
Studio or Azure Data Studio.

There are multiple ways to import or load data into Azure SQL, and the choice you make depends on
your business requirements.

Offline options:
If you are looking for an offline data migration option, then you can use the familiar BCP commands,
SSIS packages, sqlpackage.exe, or native backup/restore (only available for SQL Managed Instance) to
load data.

Online options:
Use Azure Database Migration Service to migrate data to Azure SQL Database or SQL Managed
Instance with minimum downtime.

Now that you've loaded data into your database, it's time to consider other tasks:

a. Securing your data
b. Establishing business continuity
c. Optimizing performance

Then, create database tables using the
SSMS query window:

Note: Above example shows the connectivity steps for SQL Database. If you are connecting
to SQL Managed Instance, you may have to deploy the client in the same network in which
SQL Managed Instance is deployed or enable a public endpoint on SQL Managed Instance to
allow external connectivity.

SQL

SQL

The following example shows a quick
connection to SQL Database using
SSMS:

© 2021 Microsoft Corporation. All rights reserved. This document is provided "as is." Information and views expressed in this document, including URL
and other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any legal
rights to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

Before starting, you should register for an Azure free account to get instant
access and $200 credit.

Here are the SQL Managed Instance deployment options (Single instance and Single instance -
Azure Arc):

Create an Azure SQL Database or Azure SQL
Managed Instance using the Azure portal

1

In Azure Marketplace, search for Azure SQL. From the search results, select Azure SQL.

Select Create, and it will redirect you to the Azure SQL deployment page, which shows all the
available options. You can get more details by clicking on individual options to choose the right
service for your workload requirements.

We'll use SQL databases and SQL managed instances as examples.

The following screenshot shows all the available options for SQL databases (Single database, Elastic
pool, and Database server):

Up to 80%
savings

Up to 55%
savings

Reserved Instances
with Azure Hybrid

Benefit

With Azure Hybrid
Benefit

License included

Get started with Azure SQL today.
Get hands‑on experience with an Azure free account

Learn more about Azure SQL

Connect with an Azure sales specialist

Start for free >

Security best practices
for Azure SQL

Azure SQL: The safest place for
relational data in the cloud

SQL Server and Azure SQL are known
best for enterprise-grade security
features. Learn how a multi-layered,
defense-in-depth approach can
optimize your security posture.

Azure SQL’s multi-layered approach to security

Azure Active Directory authentication

Transparent data encryption

Always Encrypted

Private Link for Azure SQL Database

Data discovery and classification

Threat detection

Vulnerability assessment

Authentication and access management

Data protection

Network security

Data governance

Azure Defender for SQL

Best practices for authentication and access management

Best practices for data protection

Best practices for network security

Best practices for data governance

Azure SQL offers built-in and configurable advanced features across five areas that provide a defense
in-depth approach to security and compliance. Let’s discuss some of the features and security best
practices from each area.

Azure Active Directory (AD) authentication is a mechanism for connecting to Azure SQL by using
identities in Azure AD. It simplifies user and password management and also enables applications
and services to use passwordless authentication and Conditional Access policies (such as
Multi-Factor Authentication (MFA)).

Transparent data encryption (TDE) with customer-managed keys enables you to bring your own key
(BYOK) scenarios for data protection at rest.

Always Encrypted is designed to protect sensitive data such as credit card numbers or national
identification numbers stored in Azure SQL Database or SQL Managed Instance.

The Private Link service allows various PaaS services to connect with private IP addresses.
Using a private endpoint, you can access Azure SQL Database privately from cross-region,
on-premises client machines. Private Link also provides a secure way to migrate workloads to Azure.

Data discovery and classification provides basic capabilities for discovering, classifying, labeling, and
reporting sensitive data in your databases.

Threat detection is a service that continuously monitors your SQL Server for SQL injection, brute
force attacks, and anomalous database access.

Vulnerability assessment is a scanning service that discovers, tracks, and helps you to remediate
potential security vulnerabilities.

Ensuring the right users have the appropriate access when they need it

Safeguarding your confidential data with available encryption options

Control network access to your data using network security group (NSG) rules,
firewall rules, private endpoints, and service endpoints

Generating insights while protecting your data

Azure Defender for SQL protects your SQL Server data in hybrid cloud and
multi-cloud environments. This solution provides advanced SQL security
capabilities, vulnerability assessment, and advanced threat protection.

Create user
accounts to
represent human
users and create
service principals
to represent
apps, automation
agents, and
services. Service
principals are like
service accounts
in Windows or
Linux.

Use customer-managed keys
in Azure Key Vault if you need
granular control over TDE
protection.

Connect to SQL Database and
SQL Managed Instance using a
private data path.

Monitor your Data Discovery & Classification
dashboard regularly for an accurate assessment
of your database’s classification state.

Don’t keep data that requires
encryption at rest in a master
database. The master database
can’t be encrypted with TDE.

Mobile users should use
point-to-site VPN configuration
to connect via data paths.

Customize the classification according to your
organization’s needs.

Using Always Encrypted with
TDE; Transport Layer Security
(TLS) is recommended for the
comprehensive protection
of data at rest, in transit, and
in use.

If you are connecting using
a public data path, make sure
that you are securing the
access using proper NSG and
firewall rules.

Use MFA with
Conditional Access
in Azure AD to
add an additional
layer of security.

Use Azure AD
integrated
authentication
to eliminate the
need for users to
use passwords.

Use managed
identities with
applications for
passwordless
authentication.

If you can’t avoid
using passwords
and credentials,
then store user
passwords and
application secrets
in Azure Key Vault.

Run vulnerability scan View report Analyze results Resolve issues

Best practices for threat prevention and detection

Configure Azure
Defender for SQL with
SQL Database Auditing
for the full investigation
experience.

Set up baselines
for acceptable
configurations until the
scan comes out clean.

Setup periodic recurring
scans to run once a
week and configure
things such that the
relevant person receives
summary emails.

Resolve checks and
update baselines where
relevant.

Let’s see how we can implement security best practices for Azure SQL.
If you do not have an Azure account, get an Azure free account today.

Threat prevention and detection
SQL Database and SQL Managed Instance secure customer data by providing
auditing and threat detection capabilities

© 2021 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views expressed in this document, including URL and
other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to
any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

Get started with Azure SQL today.
Get hands-on experience with an Azure free account

Learn more about Azure SQL

Connect with an Azure sales specialist

Start for free >

Authentication
and access
management

Azure Active Directory
authentication

Azure Defender for SQL:
vulnerability assessmentTransport Layer Security VNet injection for SQL

Managed Instance

Role-based access
control (RBAC)

Azure Defender for SQL:
threat detection

Transparent data
encryption Private Link for SQL DB Azure Purview

integration

SQL roles and
permissions

SQL Auditing with
multiple targetsAlways Encrypted Firewall rules and

network security groups

Row-level security (RLS) Audits of Microsoft
support operations

Azure Security Center
integration

Dynamic data masking

Data
protection

Network
security

Data
governance

Threat
prevention and
detection

Corporate ID Access rules

Authentication
Authentication calls

Claims

Azure Active Directory

Device Microsoft
Azure

Authentication

DBA

Security Audit

Azure Key Vault

Wrap/Unwrap DEK Audit Event Logging

Azure Monitor

Azure Active Directory

SQL

App

Plain text

Client driver

Cipher text SQL

VNet gateway

Virtual machine

Private endpoint
10.0.1.10

ExpressRoute On-premises

Deny public access

Hacker

External User Owner/Admin

Azure SQL Database
Hyperscale

Performance challenges with
growing data

With huge volumes of data and massive
workloads, organizations need to quickly scale
up their databases and improve performance.
Some businesses experience seasonal spikes
during certain times of the year due to heavy
traffic flow. Existing infrastructure may be
unable to fulfill the large seasonal workload
requirements.

Overall performance will be improved due to
higher log throughput and faster database
commit times regardless of data volume.
A Hyperscale database grows as needed, and
you’re billed only for the capacity you use.

You can scale up the compute in less than
2 minutes, whether it’s a 10 GB database or a 100 TB
database, in order to meet heavy workloads.

Database backups and restores are nearly instantaneous

Backups are nearly instantaneous and you can execute data restores in minutes as opposed to
days or even weeks. The less time IT teams spend on maintaining databases, the more time they
are able to spend on application enhancements.

Database management can be
challenging

It is difficult to manage database uptime
and backup and restore operations with an
on‑premises data warehouse. This could lead
to IT teams spending more time on database
management than on application enhancements.

When should SQL Database Hyperscale be considered?

SQL Database Hyperscale should be the first choice for business workloads with highly scalable
storage and read‑scale requirements. The General Purpose service tier is for those who require
a budget‑friendly database, while the Business Critical service tier is for those who require
extremely high IO performance.

Consider moving to SQL Database Hyperscale if you:

• Have large on‑premises SQL Server databases (database size up to 100 TB) and want to
modernize applications while moving to the cloud

• Hit maximum storage limits in the existing service tier of an SQL database
• Require fast database backups/restore operations irrespective of database size
• Require higher log throughput irrespective of database size and vCore count

Rapid scale-out to meet seasonal read workload requirements

You can provision one or more read‑only nodes to offload read workloads and use them
as hot standbys.

Updating an existing SQL database to the Hyperscale service tier

You can move your existing SQL database to the Hyperscale service tier. At this point, moving to
the Hyperscale service tier is a one‑way operation; you cannot move databases from Hyperscale
to another service tier other than by exporting and importing data. Microsoft recommends trying
out the Hyperscale service tier by making a copy of production databases and then moving a
copy of the database to the Hyperscale service tier.

Perform the following steps to try out Hyperscale:

1. Go to the Azure portal and navigate to the SQL database that you are moving to the
Hyperscale service tier.

2. Under Settings, select Configure and then choose the Hyperscale option. You also need
to acknowledge that scaling from Hyperscale to another service tier is not possible:

3. Select the Azure Hybrid options and set values for vCores and Secondary Replicas.
Once finished, click on Apply to start the migration:

© 2021 Microsoft Corporation. All rights reserved. This document is provided "as is." Information and views expressed in this document, including URL
and other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights
to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

All this can cause your organization to struggle with platform performance, scalability, and
flexibility amid growing data volumes, as well as costs.

With SQL Database Hyperscale, you can overcome platform performance
challenges and scalability issues

Figure 1: Configuring the Hyperscale option

Figure 2: Setting values for vCores

Get started with Azure SQL today.
Get hands-on experience with an Azure free account

Learn more about Azure SQL Hyperscale

Connect with an Azure sales specialist

Run your most demanding workloads with
near‑limitless growth capacity using
SQL Database Hyperscale

Hyperscale is a cloud‑native performance
tier of SQL Database. It is designed to run
a broad range of SQL Server workloads,
but is primarily optimized for Online
Transactional Processing (OLTP) and
Hybrid Transaction and Analytical
Processing (HTAP) workloads.

Let’s see how you can satisfy performance and scalability demands with
SQL Database Hyperscale.

Start for free >

SQL
SQL

Database size

Re
sp

on
se

 ti
m

e

Failover

10
vCores

100
vCores

Primary compute Secondary compute

Super-fast backup snapshots

Azure Storage

Data restores in 1 minute

10
01

10
01

10
01

10
01

Get started with Azure SQL today.
Get hands-on experience with an Azure free account

Learn more about business continuity

Find business continuity tutorials

Start for free >

High availability and
business continuity
Deploy and run highly available
solutions using Azure SQL Database
and Azure SQL Managed Instance

Azure SQL Database and Azure SQL
Managed Instance have the options and
built-in capabilities that enable your
business to continue operations with
up to 99.995% availability.

Automatic backups and built-in high availability

Built-in high availability

As soon as you deploy SQL Database and SQL Managed Instance, the automatic backup process takes
care of database backups by keeping them safe on Azure Blob Storage:

SQL Database and SQL Managed Instance come with built-in high availability and easily
configurable disaster recovery options. The SQL Database Premium and Business Critical service
tiers with zone-redundant configuration provide the highest uptime of up to 99.995%.

The Basic, Standard, and General Purpose service tiers rely on Azure premium remote storage and
a Service Fabric layer to ensure high availability. Similarly, the Premium and Business Critical tiers are
configured with local SSD and Always On availability group configuration:

By default, each database is configured with a 7-day point-in-time-restore policy, which can be easily
modified to 1–35 days with a few simple clicks using the Azure portal.

© 2021 Microsoft Corporation. All rights reserved. This document is provided "as is." Information and views expressed in this document, including URL
and other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights
to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

Steps to configure point-in-time restore and long-term
retention policies
Navigate to Server on the Azure portal and click on Backups under Settings. Select the database
and configure point-in-time restore and long-term retention backup policies:

Note: The process is same for SQL Managed Instance and the detailed steps to update can be
found here.

Configuring an automatic failover group to protect from
regional failure
Protect your SQL Database and SQL Managed Instance from regional failure with an automatic
failover group. This configuration can be done easily by following just a few steps.

How to deploy an automatic failover group:

1. Navigate to Server on the Azure portal. Choose Failover groups under the Settings menu.

2. Click on the Add group button to deploy a failover group and a new secondary server.

3. On the Failover Group page, enter a unique failover group name, such as azfog. Choose the
existing secondary server or deploy the new server by specifying values for Server name,
Server admin login, Password, and Location. This location can't be the same location as
your primary server:

4. Once deployed, use the Azure portal to trigger a manual failover or modify the group
configuration:

Note: The preceding steps are for SQL Database; you might have to follow additional steps for
SQL Managed Instance failover group creation.

SQL

Let's see how SQL Database and SQL Managed Instance can help you
achieve high availability and protect from regional failure.

SQL
SQL

M M M SQL SQL SQL

Azure Blob Storage

Automatic
Backups

Backup
Retention Policy

Basic, Standard, and General Purpose service
tier locally redundant availability

SQL

Gateway nodes

SQL
SQL

SQL

Azure region

Primary node

Standby node

Application

Failover

Azure
premium
storage
(LRS)

Data and

Premium and Business Critical service tier
locally redundant availability

SQL SQL

SQLSQL

Always On
availability group

SSD data, logs SSD data, logs

SSD data, logs
SSD data, logs

Primary
replica

Secondary
replica

Secondary
replica

Secondary
replica

Gateway nodes

Application

Fa
ilo

ve
r

SQL

Gateway nodes Gateway nodes Gateway nodes

SQL
SQL

SQLSQL
SQL

SQL

AZ 1 AZ 2 AZ 3

Primary
node

Standby
node

Standby
node

Application

General Purpose service tier zone-redundant
availability

Failover

Failover

Azure
premium
storage
(LRS)

Data and

SQL SQL

SQLSQL

Always On
availability group

SSD data, logs SSD data, logs

SSD data, logs
SSD data, logs

Primary
replica

Secondary
replica

Secondary
replica

Secondary
replica

Gateway nodes Gateway nodes Gateway nodes

AZ 1 AZ 2 AZ 3Application

Premium and Business Critical service tier
zone-redundant availability

Failover

Azure SQL Database
serverless
Optimize price performance with
compute that scales automatically

SQL Database serverless simplifies
performance management for databases
with intermittent, unpredictable usage.
Serverless automatically scales compute for
single databases based on workload demand
and bills for compute used per second.

You can set the auto-pause delay to the required duration, for example, 1 hour. This will pause
the database when it’s idle for more than an hour and you won’t have to manually turn off the
compute when required.

SQL Database serverless is automatically started whenever a connection is made.

You can reduce your monthly costs by setting up and testing the development database with
SQL Database serverless.

With SQL Database serverless, you only pay for the compute when the database is used.
When the database is paused, you only pay for storage.

Scaling up the database is a
major challenge

When to choose serverless and when to choose provisioned
compute

Putting SQL Database serverless into action

Key benefits of SQL Database serverless

SQL Database serverless is suited for a wide variety of application scenarios, such as:

With huge volumes of data, heavy read
workloads, and a constantly increasing number
of customers, it is difficult to accurately
predict incoming data volumes in advance.
This means that scaling a database ahead of
peak demand can require intensive planning
and prior investment in resources and
infrastructure. Manually scaling up the database
would likely render a low response time and
overcoming response time issues by trying to
overprovision the compute resource would be
an unsustainable cost.

Serverless compute:

• Intermittent, unpredictable usage, and
lower average compute utilization

• New workloads with sizing uncertainty

• A continuous need for rescaling tasks

Provisioned compute:

• More predictable usage and higher
average compute utilization

• Workloads more sensitive to performance
trade-offs from scaling

• Multiple databases that can be
consolidated into elastic pools

You can easily provision an SQL Database serverless instance by following these steps:

1. Open the Azure portal. In the search box, type sql database and then select SQL databases
from the search drop-down list:

2. On the Create SQL Database page, provide information for Subscription, Resource group,
Database name, and Server. If you don’t have an existing server, you can create a new Azure
SQL Logical Server instance by clicking Create new and following the instructions:

3. On the Configure page, under the General Purpose tab (vCore pricing model), select
Computer tier as Serverless.

Set Min vCores to 1 (default value) and Max vCores to 8:

4. Click Apply to save the selected configuration and return to the Create SQL Database page.
5. On the Create SQL Database page, click Review + create to get a summary of the selected

configuration:

6. Click Create to provision the database. It usually takes 1–5 minutes to provision a serverless SQL
database with this configuration.

On the SQL databases page,
click Add to add a new SQL
database:

Click on the Configure database link to configure the database properties.

Set Data max size to 10 GB:

Automatic scaling: Operate at the true rhythm of your business

Cost-effective: Pay only for storage when the database is paused

Fully managed and intelligent: Focus on your applications, not your
infrastructure

Overcoming the challenges with
SQL Database serverless

SQL Database serverless offers a robust and
resilient solution. You don’t have to worry
about scaling up for peak loads. You can set
a minimum and maximum number of vCores
for your SQL Database serverless environment.
You’ll be charged only for the lowest vCore
level during times of low usage. When larger
data loads come through, SQL Database
serverless automatically scales up to the preset
peak limit.

Let’s see SQL Database serverless in action.

Line of
business apps:

Expense reporting and
employee tracking

apps, as well as
procurement systems

E-commerce apps:
Opening new
marketplaces,

marketing campaigns,
and sales promotions

Content management
systems:

Web content
publishing and content

clearinghouses that
pull content from third

parties

Dev/test workloads:
Dev/test databases

with sporadic or idle
usage periods

Figure 1: An example of vCore billing against CPU usage

Figure 2: Searching for the SQL databases option in the Azure portal

Figure 3: Adding a new SQL database

Figure 4: Details for creating an SQL database

Figure 5: Selecting the minimum vCores from the range

Figure 6: Selecting the maximum size of the data

Figure 7: Viewing the summary of the selected configuration

© 2021 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views expressed in this document, including URL and
other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to
any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

Get started with Azure SQL today.
Get hands-on experience with an Azure free account

Learn more about Azure SQL serverless

Connect with an Azure sales specialist

Start for free >

N
um

be
r o

f v
Co

re
s

CPU usage

8:
00

9:
00

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

4

1

0

Inactive Paused

Min vCores Max vCores vCores used vCores billed

DevOps for
Azure SQL
DevOps encompasses various disciplines
such as continuous integration/continuous
delivery, testing, monitoring, and more

Learn how DevOps unifies people, process,
and technology to bring better products
to customers faster.

You can detect common T-SQL code anti-patterns using SSDT or add custom code analysis rules.

Third-party tools such as SQL Code Guard provide similar code quality features for migration-based
projects.

Open-source command-line SQL code analyzers such as sqlcheck can be integrated into CI pipelines
to drive up code quality.

Code analysis

1

2

1

2

© 2021 Microsoft Corporation. All rights reserved. This document is provided "as is." Information and views expressed in this document, including URL
and other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights
to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

State-based approach

There are two common options when it comes to implementing
changes in a database:

A typical state-based approach using
SQL Server Data Tools (SSDT) is shown
here:

SSDT compares the source control and the target database and generates a DACPAC file. The DACPAC
file is applied to the target database to deploy the changes and bring it to the source control level.

Learn how to implement CI/CD with Azure DevOps and SSDT here.

Continuous
Integration (CI) and
Continuous Delivery

(CD) physically
implement the

DevOps principles.

Declarative or state-based approach:
The developer specifies the end state of the database and lets the tooling
figure out how to incrementally update a given target database to bring it
to that end state.

Imperative or migration-based approach:
The developer (sometimes with help from some tooling) creates an
incremental script (or set of scripts) that implements the change.

CI is the practice
of developing and
pushing changes

to a source control
repository as and

when required.

CD is the practice of
delivering changes

from the source
control repository

to one or more
environments (such

as development, test,
and production).

Integrating
application and

database changes in
the same deployment
process provides for
faster and smoother

product delivery.

Migration-based approach

DevOps tooling

Code workflows

Unit tests

A typical migration-based approach involves the developer creating the change scripts manually and
deploying the scripts using a deployment tool such as DbUp, Flyway, or SQL Change Automation.

An example of implementing database migration using DbUp is available here.

To find out more about the differences between state-based and migration-based approaches and
tooling, the DevOps for Databases content within the PartsUnlimited lab exercises can be useful.

Azure DevOps provides an integrated solution
through the entire software development
lifecycle: planning, development, deployment,
and operations.

Use feature, release, and hotfix branches to
independently track ongoing work. Port changes
back to the master branch from these branches.

An example branching strategy is available here.

Unit tests can be easily implemented within
SSDT, as shown here, or by using third-party
tools such as tSQLt.

Let's see how you can implement DevOps practices with Azure SQL.

Get started with Azure SQL today.
Get hands-on experience with an Azure free account

Learn more about Azure SQL

Connect with an Azure sales specialist

Start for free >

Source control Target database
Apply

DACPAC

SSDT
compare and

Get step-by-step guidance to modernizing and
innovating on Azure SQL

Learn how to get up and running on Azure SQL and explore new technologies to operate more
efficiently and cost-effectively, freeing up resources to focus on new innovations. Download the
data sheets below to learn more about Azure SQL (click the images).

Get started with Azure SQL
Azure SQL provides flexible options for application
modernization, migration, and development. Learn how to get
started in three simple steps.

Security best practices for Azure SQL
Security and compliance are always a top priority for
organizations. Get insights on why Azure SQL is the safest place
for relational data in the cloud.

Azure SQL Database Hyperscale
Break through resource limitations that can affect your
application’s performance. Learn how to run your most
demanding workloads with near-limitless growth capacity
with Azure SQL Database Hyperscale.

High availability and business continuity
Your organization cannot afford downtime in your database
solutions. Gain insights on how Azure SQL has options and
built-in capabilities that enable your business to continue
operations with up to 99.995% availability.

Azure SQL Database serverless
Azure SQL Database serverless compute optimizes
price‑performance and simplifies performance management
for databases. Explore how to take advantage of serverless
for databases with intermittent and unpredictable usage.

DevOps for Azure SQL
DevOps on Azure SQL provides developers the SQL Server
tools you’re familiar with and the process to improve the
way you deliver solutions to market. Explore how DevOps on
Azure SQL will make your business more efficient.

Get started with Azure SQL today.
Get hands-on experience with an Azure free account

Learn more about Azure SQL

Connect with an Azure sales specialist

Start for free >

https://azure.microsoft.com/free/sql-on-azure/
https://azure.microsoft.com/free/sql-on-azure/
https://azure.microsoft.com/services/azure-sql/
https://azure.microsoft.com/overview/contact-azure-sales/
https://azure.microsoft.com/free/sql-on-azure/
https://CloudDamCdnProdEP.azureedge.net/gdc/gdcxcUwiB/original
https://CloudDamCdnProdEP.azureedge.net/gdc/gdcukHMsf/original
https://CloudDamCdnProdEP.azureedge.net/gdc/gdcogLjJc/original
https://CloudDamCdnProdEP.azureedge.net/gdc/gdcTYpLzf/original
https://CloudDamCdnProdEP.azureedge.net/gdc/gdc9Mp48j/original
https://CloudDamCdnProdEP.azureedge.net/gdc/gdcP57yhN/original
https://azure.microsoft.com/free/sql-on-azure/
https://azure.microsoft.com/services/azure-sql/
https://azure.microsoft.com/overview/contact-azure-sales/

