= Microsoft

Create an Agent
MVP in 30 Days

A Microsoft Foundry Developer Checklist

Is your agent development process
bogged down in ambiguity,
second-guessing, and redundant efforts?

This checklist is designed to help teams
build a minimum viable product (MVP)
agent in approximately 30 days. The steps
are organized by the five pillars of the
Microsoft Well-Architected Framework.

Reliability Performance Efficiency
Operational Excellence

Security

@ Embed content
safety and privacy

@ Enable end-to-end
encryption

Adopt key-less

@ authentication
(Entra ID)

Implement

@ role-based

access control

Reliability

Integrate content safety filters at every stage of development.
Remove unnecessary personal or confidential data from storage
and logs to help support privacy requirements. This approach
can help reduce the risk of exposing sensitive information and
support user confidence.

Encrypt data at rest with platform-level encryption, such as
Azure-managed or customer-managed keys, for all databases,
storage accounts, and artifacts.

Enforce HTTPS for all data in transit to protect data comprehensively
in your MVP agent environment.

Eliminate static APl keys from your architecture. Use Microsoft Entra
ID for authenticating calls to Foundry Tools and your own APls.

This modern approach to managed identity simplifies security
and compliance, removing the risks of leaked keys while providing
fine-grained access control.

Grant permissions using Azure Role-Based Access Control (RBAC),
so each team member and service has the permission they need.
Leverage Foundry’s built-in roles (User, Project Manager, Account
Owner) for project and resource access.

Proper RBAC supports secure, scalable collaboration and is
designed to align with enterprise compliance expectations.

@ Leverage managed
HA infrastructure

@ Plan graceful
failure and fallback

Keep the

@ architecture

stateless

Set up health

@ checks and

recovery

For the MVP, deploy critical components on redundant instances
to avoid a single point of failure. Consider deploying multiple agent
service instances behind a load balancer to improve resilience.

Design the agent to fail gracefully—providing fallback
responses—if an Al model or data source is unavailable.

For instance, keep a previous model version or a simplified
rules-based response as a fallback when the latest model
deployment encounters issues. That way, the agent still
provides output instead of crashing.

Avoid local session or instance-specific data and build the MVP
agent to be stateless, to enable easy scaling and recovery.

A stateless design means that any instance can be replaced or
duplicated without impacting user experience, enabling seamless
scale-out and future failover.

Implement basic health monitoring for your agent service
(e.g., a heartbeat endpoint).

Configure the platform (App Service, Azure Kubernetes Service
[AKS], etc.) to automatically restart or fail over if a health check fails.

Having automated health checks and self-healing policies in place
can support quicker recovery from crashes, even during the MVP phase.

Performance Efficiency

@ Right-size compute
resources

@ Optimize for speed

@ Implement caching

@ Enable automatic
scaling rules

Don’t over-provision for the MVP. Start with the smallest setup
that meets your latency requirements.

Select the appropriate Azure resources for your workload to
meet performance targets (keep the link). Use GPU-powered
VMs only when required for heavy model tasks, and opt for
CPU-optimized instances for lighter inference to balance speed
and cost. To support effective architecture planning, use App
Advisor during the design phase to help right-size your solution.

Evaluate fine-tuning options using the Foundry recommendations
outlined here: Foundry fine-tuning considerations.

Assess whether Small Language Models (SLMs) meet your use
case requirements by reviewing the guidance provided here:
What Are Small Language Models (SLMs)?

Introduce caching to optimize performance and reduce
unnecessary processing.

For example, implement Azure Cache for Redis to temporarily
store frequently accessed data—such as common responses or
embeddings—and reuse it when appropriate. This approach can
significantly reduce repeated calls to the model or external services,
lower operational overhead, and improve response times for end users.

Configure automatic scaling so the agent can handle load spikes
without manual intervention.

Using Azure Container Apps or AKS, set up auto-scale triggers
(e.g., CPU or response-time thresholds) to spin up additional
instances under high load. This ensures consistent performance
as usage grows, even during the MVP trial runs.

Cost Optimization

@ Analyze cost
drivers early

@ Use cost-efficient
services

@ Minimize idle
resource waste

Automate for lower

@ Total Cost of

Ownership (TCO)

Identify key cost factors for your Al agent (data volume, number
of queries, latency requirements, and any third-party API costs)
and create a simple cost model.

Set an initial budget for the 30-day MVP and track against it so
you have clear visibility into how each feature or usage pattern
impacts Azure spend.

Choose technology options that meet requirements efficiently to
secure the best rates from providers. For example, run your MVP
on consumption-based plans or lower-tier instances.

If you have batch training jobs, consider spot instances (preemptible
VMs) to save money. Match resources to intended use — don't
pay for an always-on high-end GPU if your agent’s workload doesn't
continuously require it.

Monitor Azure usage and shut down any unneeded processes.
Set spending guardrails: Use Foundry and Azure Monitor tools
to watch utilization and set alerts.

Consider pausing or scaling down dev/test virtual machines
(VMs) or orchestration jobs during off-hours to help manage
costs. This approach may prevent cloud costs from piling up
when the agent is idle.

Leverage automation and best practices to reduce ongoing
costs. For instance, automate deployments and testing to cut
manual effort, and use auto-scaling to avoid over-provisioning.

These optimizations can help save time and contribute to a lower total
cost of ownership as your agent moves from MVP to production.

Operational Excellence

@ Embrace DevOps
and agile iteration

Automate CI/CD

@ pipeline with

GitHub Actions

Consider using

@ PaaS and monitor

from day 1

Practice safe

@ deployments

and feedback

Work in rapid, iterative cycles rather than a long waterfall.
From the start, involve developers, IT ops, and data scientists
in planning so that requirements are clear.

Aim to deliver a basic functional agent in a short sprint, then
improve it. This DevOps/MLOps mindset with early cross-team
collaboration can help you catch mismatches early and
continuously learn and adjust.

Set up a continuous integration/continuous deployment (CI/CD)
pipeline using Foundry's integration with GitHub Actions.
Automate builds, tests, and deployments so that every code
change is quickly validated.

This reduces human error, provides quick feedback on what
works, and gets new features or fixes into the agent faster — all
critical in a 30-day MVP timeline.

Evaluate platform services (Azure OpenAl, Functions) to avoid
server management, and enable logging plus Azure Monitor/App
Insights from day one for proactive error and performance alerts.

Even in the MVP stage, deploy changes in a controlled way.
Implement basic safe deployment practices. For instance, test
new model versions with a small set of queries or internal users
before rolling out to everyone, and have a rollback plan.

Continuously collect feedback after each update and use it
to inform the next iteration. This approach ensures you improve
the agent steadily without major setbacks or regressions.

Learn more about building Build and publish your apps
Al agent solutions with the and agents faster with
Microsoft Al Envisioning Microsoft offers for software

Day video series.

development companies.

©2026 Microsoft Corporation. All rights reserved. This document is provided “as-is.” Information and views expressed in this document, including URL and
other internet website references, may change without notice. You bear the risk of using it. This document does not provide you with any legal rights to any
intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.


https://learn.microsoft.com/azure/well-architected/pillars
https://learn.microsoft.com/azure/ai-foundry/openai/concepts/content-filter?view=foundry-classic
https://learn.microsoft.com/azure/ai-foundry/how-to/concept-data-privacy?view=foundry-classic
https://learn.microsoft.com/azure/ai-foundry/openai/encrypt-data-at-rest?view=foundry-classic
https://learn.microsoft.com/azure/ai-foundry/openai/how-to/managed-identity?view=foundry-classic
https://learn.microsoft.com/azure/ai-foundry/openai/how-to/role-based-access-control?view=foundry-classic
https://learn.microsoft.com/azure/well-architected/reliability/identify-flows
https://learn.microsoft.com/azure/well-architected/reliability/self-preservation
https://www.microsoft.com/software-development-companies/app-advisor/guidance/my-results?stage=build&step=design-your-solution-architecture
https://www.microsoft.com/software-development-companies/app-advisor/guidance/my-results?stage=build&step=design-your-solution-architecture
https://learn.microsoft.com/azure/ai-foundry/openai/concepts/fine-tuning-considerations
https://azure.microsoft.com/resources/cloud-computing-dictionary/what-are-small-language-models
https://azure.microsoft.com/products/cache
https://learn.microsoft.com/azure/well-architected/cost-optimization/cost-model
https://learn.microsoft.com/azure/well-architected/cost-optimization/get-best-rates
https://learn.microsoft.com/azure/ai-foundry/how-to/costs-plan-manage?view=foundry-classic
https://learn.microsoft.com/azure/well-architected/cost-optimization/set-spending-guardrails
https://learn.microsoft.com/azure/well-architected/operational-excellence/devops-culture
https://learn.microsoft.com/azure/well-architected/operational-excellence/automate-tasks
https://azure.microsoft.com/products/monitor
https://learn.microsoft.com/azure/well-architected/operational-excellence/safe-deployments
https://info.microsoft.com/ww-landing-microsoft-ai-envisioning-day.html?lcid=EN-US?ocid=cmmtri7hcjg
https://www.microsoft.com/software-development-companies/offers-benefits/isv-success?ocid=cmmxt6sgnbv

