
Microsoft Marketplace Monetization
Checklist for SaaS and Container Offers
This resource brings together two practical checklists to
help software development companies successfully launch
and monetize AI solutions, whether software as a service
(SaaS) or container-based, on Microsoft Marketplace. Inside,
you’ll find actionable steps organized by the five pillars of the
Azure Well-Architecture Framework, with guidance tailored
for both solution types.

Each section is designed to help your team:

•	 Build trust with enterprise customers through robust
security and compliance.

•	 Ensure reliability and scalability for seamless
customer adoption.

•	 Optimize performance and cost to drive profitability.

•	 Operationalize your offer for ongoing growth, support,
and marketplace success.

By following these checklists, software
development companies can confidently
move from idea to revenue. Get ready to unlock
global reach, streamline sales, and engage
new customers through the power of
Microsoft Marketplace.

Learn more about building AI agent solutions with
the Microsoft AI Envisioning Day video series

Watch now

Optimize your offer listing with compelling value propositions,
high-quality visuals, and clear deployment instructions to boost
customer engagement and conversion rates.

Learn how

Marketplace monetization checklist for SaaS offers
Building a successful AI Agent SaaS offer on Marketplace requires aligning your technical architecture with a clear monetization strategy
and packaging that resonates with customers. This checklist is grouped by the five pillars of the Microsoft Well-Architected Framework, focusing
on business and IT decision makers’ needs for revenue and marketplace growth. It ensures your SaaS solution is technically sound and optimized
for pricing, tiering, and marketplace positioning.

Security

Address
privacy &
compliance

Identify the applicable legal, regulatory, industry and compliance
objectives you must meet.

Ensure data residency and privacy policies meet enterprise standards.

Implement
Microsoft
Entra ID

Enable secure single sign‑on and automated user provisioning
for transactable SaaS offers in Microsoft Marketplace.

Enforce secure
licensing

Protect revenue by ensuring only authorized users or tenants access
paid features.

Integrate license checks in your app, or use Entra ID group claims/license
assignments, to prevent usage beyond entitlements.

Securely call Marketplace APIs to validate subscription status on login
report usage.

Brand &
secure the
authorization
experience

Apply company branding to Entra ID login screens to present
a professional, trustworthy image.

Enable TLS/SSL across all endpoints and store secrets in Azure Key
Vault for payment and usage endpoints.

Cost optimization

Define
revenue
model &
pricing early

Align architecture and cost with your chosen pricing model.
Choose subscription, usage, or outcome-based pricing during
solution design.

Outcome-based (say, $X per report) pricing might mean sporadic spikes
in usage, requiring scalable architecture but allowing you to pass cloud
costs directly to customers.

Subscription models mean fixed income, so control costs to protect margin.
Locking strategy early ensures you align engineering effort
and Azure service choices with monetization.

Model your
Cost of Goods
Sold vs price

Project costs and revenue using the Azure Pricing Calculator
and Marketplace Value Calculator.

Verify that included usage for each plan tier does not exceed price.

Package tiers
for upsell &
MACC

Offer packaging tiers that serve different customer sizes while also
encouraging upgrades. For instance, a Basic plan with limited AI calls
pushes heavy users to upgrade to Pro rather than pay overage.

Also consider a custom Enterprise plan for large customers, possibly
aligning with Microsoft Azure Consumption Commitment (MACC),
so customers can use committed spend.

Leverage
Microsoft
incentives

Enroll in ISV Success and Marketplace Rewards incentives.

Eligible programs may provide benefits such as Azure credits, reduced
marketplace fees, and co-marketing support as you scale.

These programs may help reduce customer acquisition costs.

Optimize
trial to paid
conversion

Use cost-effective means to offer free trials or freemium without
jeopardizing revenue.

Consider offering a time-limited trial (e.g., 14 days) with usage controls
to manage costs, in accordance with Marketplace capabilities and your
business objectives.

Monitor trial usage and require a credit card or restrict high-cost features if
usage is excessive.

Reliability

Thorough
subscription
testing

Rigorously test the end-to-end Marketplace purchase and activation flow
in a staging environment.

Simulate subscribe, upgrade, renew, and cancel scenarios using Preview
Audience links.

Subscription
lifecycle
resilience

Design for fault-tolerance in commerce flows. Queue or retry Resolve
and Activate API calls to ensure customer subscriptions are provisioned
despite Marketplace delays.

 Implement graceful de-provisioning on unsubscribe to prevent
“zombie” users from consuming services without payment.

Scale to honor
paid usage

Ensure your SaaS scales with customer adoption.

Implement backpressure and task queues for AI workloads
to ensure high-paying customers receive promised throughput
without timeouts.

Usage
metering
accuracy

Build robust monitoring for usage events to support
usage-based revenue.

Duplicate critical metering information by logging usage to a database
and sending it to the Marketplace metering API.

If an outage occurs, have a mechanism to reconcile missed usage data
once recovered.

Dependable
support &
SLAs

Publish a clear SLA outlining uptime and response targets, and implement
processes to help meet those commitments.

Minimize downtime by using Azure’s high-availability features such
as Availability Zones and multi-instance deployment.

Performance efficiency

Align
architecture
with pricing
model

Design your solution to handle the usage pattern you charge
for efficiently.

For example, if you sell per-user subscriptions, ensure the app scales
for concurrent users (horizontal scaling on App Service or AKS).

If you charge per AI request, optimize the AI pipeline (caching results, batch
processing) so you can serve more requests per second at
lower cost.

Tiered service
levels

Implement resource isolation or QoS for different plan tiers:
“Starter” customers might share a compute pool, while “Enterprise”
customers get a dedicated instance or higher-priority thread pool.

This prevents lower-tier customers from affecting higher-tier customers’
available resources.

Optimize cost
of goods sold
(COGS)

Use Azure resources efficiently to keep COGS low. Choose right-sized
SKUs and auto-scale rules so you’re not over-provisioned for low
usage periods.

For example, run your AI inference on serverless or schedule scaling
around business hours if applicable.

Optimize costs
with reserved
instances &
capacity

Where appropriate, commit to 1- or 3-year reservations for Azure VMs,
Azure Kubernetes Service (AKS) node pools, and Azure OpenAI Service
to lock in discounted rates.

Reserved capacity ensures predictable pricing and resource availability
for long-term workloads, reducing total cost of ownership while
maintaining performance.

Monitor &
tune usage
patterns

Continuously review Azure Monitor metrics and Application Insights telemetry
to identify which features or times drive peak loads.

Use this data to refine your packaging. For example, if one feature is very
resource-intensive, consider making it available in higher tiers only.

Operational excellence

Choose
Marketplace
offer type

Decide whether to publish as a transactable SaaS offer or use a contact-me listing.

For monetization, transactable SaaS is preferred. Microsoft handles billing, and you get a broader reach and MACC eligibility.

Only use “Contact Me” if your sales process absolutely requires custom negotiation from day one.

Configure
plans &
pricing in
Partner
Center

Set up your plans in Partner Center reflecting your monetization strategy. For SaaS: pick Flat rate vs Per user, then define regional pricing. Make sure your tiered plans have clear names like
Starter, Pro, and Enterprise.

Utilize Private plans for special deals (target specific tenant IDs for enterprise discounts). Double-check all pricing and terms before publishing.

Implement
fulfillment &
metering APIs

Integrate the SaaS Fulfillment API for automated subscription management. Resolve purchase tokens, Activate subscriptions, and handle Renewals or Cancel events reliably.

If using usage-based billing, connect to the Marketplace Metering API to report usage (e.g., number of AI tasks) in near-real-time so that Microsoft can bill appropriately.

Set up trial
and upgrade
paths

In Partner Center, enable a free trial or a free tier plan if it’s part of your growth strategy.

Ensure your app clearly guides trial users to convert (in-app notifications as trial expiry nears, seamless upgrade button that triggers a plan change via Marketplace).

Test the plan change flow thoroughly: when a user upgrades from “Basic” to “Pro,” your backend should immediately unlock Pro features, and the billing should switch at the next cycle.

Plan for
support & lead
management

Marketplace will generate customer leads for you (contact information of users who tried or purchased). Set up a process to ingest these customer leads into a CRM and follow up quickly.

Maintain a good support system: list two support methods (email, phone, etc.) on your offer. Providing responsive support during trials may help encourage conversion.

Leverage
co-sell and
Marketplace
programs

Once your SaaS offer is live and you have initial customers, engage Microsoft’s co-sell program.

Ensure your listing is marked “IP Co-sell Incentivized” by meeting requirements (transactable, at least one Azure customer, etc.). This motivates Microsoft’s sales teams to bring you into deals
as they get quota credit.

Co-sell support may exponentially increase your sales pipeline at low cost, so operationalize it: have datasheets and a demo ready for Microsoft sellers to use.

Ongoing
monitoring &
optimization

Post-launch, continuously monitor Marketplace analytics. Discover which plans are selling best, where drop-offs happen in the acquisition funnel, and the usage patterns of active customers.

Use Azure Monitor to track tenant-level usage and detect if any customer is hitting limits frequently – that’s an upsell opportunity.

Regular
update &
compliance
checks

Treat the Marketplace offer as a living artifact. Update your offer listing frequently, with new screenshots and updated descriptions of the latest AI features or ROI stats.

Regularly review your privacy policy and terms are up to date. Marketplace certification will check them, so keeping them current avoids delays when publishing updates.

Stay compliant with any changes; for example, if Microsoft updates transactable offer requirements or fee structure, adapt quickly.

Marketplace monetization checklist for container offers
For AI solutions delivered as Containerized Kubernetes Applications via Microsoft Marketplace, monetization involves a slightly different path.
You’ll be selling a managed AKS deployment that runs in the customer’s Azure subscription, with billing through Marketplace.

This checklist (grouped by Well-Architected pillars) helps ensure your container-based AI agent is packaged, priced, and deployed
in a way that drives revenue and customer adoption.

Security

Container
image
security &
trust

Enterprise deployment of your container often depends on clear
evidence of robust security and compliance practices.

Scan your container images for vulnerabilities and follow Microsoft’s
security baseline: No root access and minimal OS libraries.

Sign your images and publish a secure supply chain story to build trust in
customer organizations.

Cluster
permission
model

Design your Kubernetes manifest with least-privilege in mind.

Don’t require cluster-admin and use Namespaces and RBAC.
Many customers will review this before purchase.

A security-compliant deployment may help accelerate
deployment timelines.

Entra ID
integration

If your containerized app has a UI or API that users log into, integrate
Entra ID auth just like a SaaS (multi-tenant or customer’s tenant).

For purely backend agents, consider supporting managed identities
or Key Vault for any credentials. Showing you align with Azure security
best practices can assure cautious customers that it’s safe to deploy.

BYOL license
handling

If offering a Bring-Your-Own-License option, ensure you have a secure
license activation inside the app. Only paying customers should get
full functionality.

For example, require a license key for BYOL deployments and secure
the validation.

Cost optimization

Select the
right offer
billing model

Azure Container offers can be transactable or BYOL. For monetization, plan on
a transactable offer unless you have an existing license model you must honor.

Within transactable, choose a pricing dimension that maps to value: for
example, an AI inference agent might charge per core-hour or
per execution.

It’s best to start with a straightforward metric (per core or per node) that aligns
with cluster size growth. You can evolve to more refined custom metrics as
you gather usage data.

Competitive
pricing &
packaging

Research comparable solutions or DIY costs. Customers often
compare running your agent vs. hiring staff or using another tool.

Price your container offer to be compelling: for example, “estimated
$500/month for typical use” should come in lower than the manual
alternative’s cost.

Consider offering a free trial period (you can publish an initial 30-day
free plan or BYOL trial plan) to reduce adoption barriers, then convert
to paid.

Core vs.
custom meter
trade-off

Predefined meters like cores, nodes, and pods are easier to implement in Azure
auto-reports, but might not directly reflect business value.

Custom meters let you charge per outcome, like per document processed,
aligning cost with value.

However, custom metering requires you to instrument and report usage,
introducing complexity. For launch, decide if the added complexity is worth it.

Many start with a core-based model and only later introduce
outcome-based pricing if it gives a market edge.

Azure cost
transparency

Be mindful that customers will pay Azure infrastructure costs in addition
to your software fee.

Optimize your solution’s resource consumption to keep its overall
cost reasonable.

For instance, if your agent processes data, allow customers to choose
a lower-cost Azure SKU or scale down when idle.

In your offer description, provide transparency to help customers
estimate costs.

Plan for MACC
eligibility

If your container offering is Microsoft Azure Consumption
Commitment-eligible, any spending on your solution counts toward
the customer’s MACC commitment. This may be a strong incentive

for them to choose your solution over a non-MACC alternative.”

Highlight “MACC eligible” in conversations. Operationally, ensure your
offer is listed as such.

Reliability

Deployment
resilience

Verify that your Helm chart/ARM template for the container offer
deploys reliably on various cluster sizes and versions.

Test on AKS of different sizes, and handle insufficient quota gracefully;
document required VM SKU or cores.

Azure Marketplace Container offers allow a test drive in a sandbox;
use that to iron out kinks.

License
enforcement
on failures

If using usage meters or periodic billing, ensure the agent
handles it gracefully.

It should cache usage and retry, rather than disabling functionality.
Reliability in usage reporting protects your revenue stream under
adverse conditions.

Scalable
architecture
on cluster

Design your Kubernetes app to scale within the customer’s cluster
so that it can handle the load as they increase usage.

Utilize HPA (Horizontal Pod Autoscaler) if appropriate, or let the
customer know how to best scale your solution.

Transactional
consistency

If your container solution uses custom metrics for billing via the
Marketplace Metering service, ensure exactly-once or idempotent
reporting to avoid over- or under-charging.

For example, include a unique usage event ID if reporting via API
so duplicates aren’t counted.

Backup &
recovery for
state

If offering a Bring-Your-Own-License option, ensure you have a secure
license activation inside the app. Only paying customers should get
full functionality.

For example, require a license key for BYOL deployments and secure
the validation.

Performance efficiency

Choose the
right billing
metric

Azure Container offers support various pricing meters (per core,
per node, per pod, etc.). Select the meter that best aligns with how
your app uses resources.

Example: If your AI agent uses significant CPU, per core or per node
 pricing ensures revenue scales with usage. If it’s mostly one pod doing
work regardless of cluster size, per-pod or per-cluster instance might fit.

Optimize
container
resource
usage

Keep your container resource requests modest because many pricing models
charge per core or node allocated.

By being efficient, you allow smaller customers to deploy on minimal clusters,
expanding your addressable market.

Performance
tiers via sizing

Consider offering multiple deployment profiles to match packaging tiers.

For instance, a “Standard” edition of your container might scale to 2 pods
and handle moderate data, while an “Enterprise” edition can scale to 10+ pods
and handle large loads.

Configure this inside the Helm chart, which larger customers can adjust.
This encourages customers to self-select into higher tiers as their
performance needs grow.

Test
multi-tenant
efficiency

If your containerized agent will be installed per-customer, ensure that running
many instances across different customer clusters doesn’t degrade Azure
or your service calls.

Efficient algorithms and use of cloud-scale services ensure you can support
growth in number of deployments without performance bottlenecks hitting
your own backend.

Geo-
distribution
strategy

If your solution involves data or users across regions, support deploying
the container app in the customer’s preferred region(s).

Performance efficiency includes minimizing latency for end-users.
A snappy solution in their region is more likely to be adopted enterprise-wide.

Plan your container images and manifests to be region-agnostic,
and utilize Azure Arc to reach on-prem clusters.

Operational excellence

Prepare
Kubernetes
assets for
Marketplace

Package your solution following Microsoft’s guidelines: create an Azure Application (CNAB/Helm chart) that defines how your container deploys on AKS.

Include health probes, proper resource limits, and an easy configuration. Consider exposing parameters for keys or small customizations.

Configure
plans in
Partner
Center
(Container)

In Partner Center, define Container offer plans similar to SaaS: you might have a “Standard” and “Enterprise” plan with different pricing or deployment scales.

Use Plan visibility: Public plans for general availability, and Private plans for special deals or pilot customers. For instance, you could privately offer a discounted plan to a design partner.

Also, configure supported regions and any prerequisites in the plan description, to ensure customers pick the right option and ultimately convert.

Implement
metering &
telemetry

Unlike SaaS, container offers often require you to report consumption.

Use the Marketplace Metering SDK or API to emit usage events for custom metrics.

Instrument your app with telemetry: have it log usage details to App Insights or Log Analytics so you can verify usage patterns and correlate with billing.

Set up alerts if usage reporting fails or if usage is unexpectedly low or high. This could indicate an issue or an upsell opportunity.

Guide
customer
deployment
sizing

Provide documentation or an onboarding script to help customers size their AKS cluster appropriately for your solution.

This falls under operational support, but it directly ties to monetization: if customers deploy too small and have bad performance, they may churn; if they deploy too large and pay too much,
they may blame your solution for being costly.

Enable private
offers & trials

Similar to SaaS, you can leverage private offers for containers, like a custom price for a large client who will deploy five instances globally.

Set this up by creating a private plan in Partner Center and sharing only with that client’s tenant. Operationally, be prepared to support these custom deals with dedicated TAM and deployment settings.

Also consider a trial plan. While containers don’t have a built-in free trial toggle, you can publish a plan at $0 with an expiration or issue a promo code via private offer.

Continuous
update &
marketplace
compliance

Keep your container offer up-to-date. Azure and Kubernetes evolve; regularly test your solution on the latest AKS versions and update your Helm charts if needed (e.g., API deprecations).

Update your offer listing to reflect new features or Azure integration as you add them.

Monitor the Marketplace certification policies for containers as well. Staying compliant ensures your offer remains live and transactable; any lapse could pause new sales.

Customer
success &
support plan

Although the solution runs in the customer’s environment, provide strong customer success touchpoints.

Proactively reach out 1-2 weeks post-deployment to ask if they need help or tuning. You can even offer a free review of their configuration. This is operational overhead, but it pays back in higher
retention and expansion.

Make it easy for customers to get help. Clearly document how to open support tickets, and ensure your support contacts in Partner Center are updated and monitored.

Leverage
ecosystem
programs

Use App Advisor to help ensure your offer meets best practices. You can also leverage Microsoft offers that are built for software development companies.

©2026 Microsoft Corporation. All rights reserved. This document is provided “as-is.” Information and views expressed in this document, including URL and other internet website references, may change without notice.
You bear the risk of using it. This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes.

https://marketplace.microsoft.com/
https://learn.microsoft.com/en-us/azure/architecture/framework/
https://info.microsoft.com/ww-landing-microsoft-ai-envisioning-day.html?lcid=EN-US&ocid=cmm4yzigw1k
https://www.microsoft.com/software-development-companies/app-advisor/guidance/my-results?stage=grow&ocid=cmmsxutxdea
https://azure.microsoft.com/en-us/pricing/calculator/
https://www.microsoft.com/en-us/software-development-companies/grow-sales/marketplace/value-calculator
https://www.microsoft.com/software-development-companies/app-advisor/guidance/my-results
https://www.microsoft.com/software-development-companies/offers-benefits

